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Abstract

Transformer-based long video understanding models are
hindered by their high computational complexity and pro-
hibitive memory cost, since the memory and computation
scale quadratically with input sequence length. We pro-
pose LongVidRWKV to address this challenge by replac-
ing the LLM component in MLLMs with RWKV, an RNN-
like language model that handles input sequences of ar-
bitrary length with constant-size hidden states. To reduce
the gap between RWKV’s 4k context length and the ex-
tended token sequences typical of long videos, we combine
visual token merge with linear RNN models and reorder
merged visual tokens. Despite having only 2B parameters
and being trained exclusively on public data, LongVidR-
WKV achieves performance comparable to Transformer-
based models of similar size trained on private datasets
across multiple video benchmarks. This demonstrates the
potential of efficient, linear RNNs to lower the computation
entry barrier for long video understanding. To our knowl-
edge, we are the first to use an RWKV LLM backbone in a
LLaVA-like model for open-ended video understanding.

1. Introduction
Large multimodal models (LMMs) [2, 35, 41, 49–54] have
demonstrated strong abilities such as captioning and vi-
sual question answering. Among them, video-based LMMs
often follow an architecture similar to LLaVA [26, 28],
which faces challenges when processing longer videos with
complex temporal dynamics. As more frames are sam-
pled, computation in LLaVA’s visual extractor scales lin-
early, with tokens attending only within the same frame.
However, the computation in LLaVA’s LLM backbone
scales quadratically with the number of input frames due
to causal self-attention mechanism, where each token at-
tends to all previous tokens. To develop more efficient
LMMs, prior works propose various token reduction strate-
gies [1, 15, 17, 30, 38]. For instance, Token Merge [3]
(ToMe) is a training-free method that gradually combines
visual tokens based on token similarity, and has proven ef-
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Figure 1. VRAM cost under gigabyte (GB) (y-axis) v.s. frame
number (x-axis) comparison. While the previous method can
only support around 100 frames of inference with A100 or H100,
LongVidRWKV can handle videos with over 10 thousands frames
on a 24GB GPU. LongVidRWKV has a 34× advantage over other
methods in terms of VRAM cost when process 1,024 frames.

fective in image and video understanding tasks [5, 36].
Currently, linear RNN models such as Mamba and

RWKV [12, 14, 31, 32] utilize linear attention variants [18,
44] whose training memory cost scales linearly with input
sequence length, making them ideal for the LLM backbone
in LMMs. Previous works [6, 13, 23, 24, 29, 56] propose
linear attention based visual encoders for tasks like image
classification and action recognition. VisualRWKV [16]
and VL-Mamba [33] use RWKV and Mamba respectively
as the LLM backbone for image-based LMMs. Vamba [34]
distills Qwen2-VL [41] into a hybrid video LMM. How-
ever, no previous works explore using RWKV as an efficient
LLM backbone for open-ended video QA.

In this paper, we present LongVidRWKV to incorporate
more input frames within a limited 4k context length of the
pretrained RWKV LLM, combining the simple yet efficient
token merging strategy with linear RNN models by reorder-
ing the merged visual tokens, which is empirically proven
to be beneficial to various video understanding tasks. Our
main contributions are summarized as follows:
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Figure 2. Visualization of the Sorted Token Merge (S-ToMe) algorithm used in LongVidRWKV’s visual encoder.

• We employ a fully recurrent LLM backbone in a LLaVA-
like model architecture for open-ended video QA, pre-
senting a novel hybrid architecture that can handle long
video inputs with lower memory requirements.

• We propose a training-free Sorted visual Token Merge
(S-ToMe) strategy to bridge the gap between long video
token inputs and RWKV’s limited pretrained 4k context
length while retaining visual information.

• Despite only being trained on public data, our model
performs favorably against several state-of-the-art larger
LMMs across video understanding tasks, while reducing
computational complexity and memory consumption.

2. Method
2.1. Network Architecture
We inherit the LMM architecture of LLaVA-1.5 [27], with
SigLIP [46] as the vision encoder and a simple two-layer
MLP as the cross-modal connector. We do not consider
linear-attention based visual extractors since the computa-
tion overhead and memory requirement in vision transform-
ers is already O(N) with respect to number of sampled
frames N . We use RWKV-v6 [32] as the LLM backbone.
However, [8] and [48] show that linear RNNs fail to ex-
trapolate beyond pretrained context length. RWKV lacks
context extension techniques, necessitating the introduction
of token merging [3] to reduce the number of visual tokens.
2.2. Sorted Visual Token Merge
Although RWKV’s [32] is memory-efficient in handling
arbitrary-length input, [8] shows that linear attention mod-
els overfit to their pretrained context. Since RWKV [32]
is pretrained with a 4,096-token context, we introduce To-
ken Merging [3] to merge similar visual tokens per frame,

Algorithm 1 Sorted Visual Token Merge

Require: Input visual tokens per frame X
Require: Vision Transformer V with N layers
Require: Token Merging threshold r

for n in V[: N − 1) do
# X ∈ [batch, tokens, channels]
X ← Attentionn(X )
# Split CLS tokens and patch tokens
CLS,X ← X [:, 0, :],X [:, 1 :, :]
# Assign patch tokens to Set A, Set B
A,B ← X [:, :: 2, :],X [:, 1 :: 2, :]
Scores← similarity(A,B)
# Get merged tokens and unmerged tokens
src, unm← top(X , Scores, r)
dst← merge(src)
# Update patch count s for each token
update(dst.s)
# Sort tokens by s
X ← sort(dst, unm)
X ← concat(CLS,X )
X ← MLP(CLS,X )

end for

bridging the gap between the pretrained context and lengthy
visual sequences. To model visual input sequence order,
Transformers utilize explicit positional embedding [19, 37,
39, 40], while RNNs model sequence order implicitly due
to their recurrent nature. Prior works [16, 23, 29] enhance
detailed visual modeling in linear attention models by bidi-
rectionally scanning tokens, increasing computational cost.
Instead, we propose a simpler, training-free visual token re-
ordering strategy to better utilize the pretrained unidirec-
tional textual modeling capabilities while retaining as much



Table 1. Results on short video understanding benchmarks [5, 42, 45]. The best result is highlighted in bold, and the second best is
underlined. Results with * are evaluated in-house, while others are sourced from official leaderboards of each benchmark.

Models Size #Frame VDC [5] ANet [4] VATEX [42]
Avg. Short Camera Background Main Object Detailed Acc. Score BLEU@1

LongVA [47] 7B 64 34.50 31.94 35.32 36.39 40.95 27.91 - 2.8 65.2*
ShareGPT4Video [7] 8B 16 36.17 39.08 33.28 35.77 37.12 35.62 - - 56.6*
LLAVA-OneVision [21] 7B 32 37.45 32.58 37.82 37.43 38.21 41.20 56.6 - 54.2*
AuroraCap [5] 7B 16 38.21 32.07 43.50 35.92 39.02 41.30 61.8 3.8 57.1
InternVL-2 [9] 8B 16 37.72 33.02 39.08 37.47 44.16 34.89 - - -

LongVidRWKV (ours) 2B 1fps 42.54 38.89 43.70 40.26 46.32 43.54 60.0 4.2 68.5
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Figure 3. LongVidRWKV prompting strategy overview.

spatial information as possible. As shown in Figure 2 and
Algorithm 1, we reorder merged tokens by the number of
visual patches in ascending order.

2.3. Prompting Strategy
RWKV [31] and other linear RNN language models have
constant hidden states, limiting their instruction-following
ability without careful prompting. To address this, we adopt
the sandwich prompting strategy from VisualRWKV [16],
inserting reordered merged visual tokens between dupli-
cated instructional text tokens, as shown in Figure 3.

2.4. Training Recipe
Following [5], we further adopt a three-stage training strat-
egy, which can be noted as Pretraining, Vision and Lan-
guage stages. All data we use to train LongVidRWKV are
publicly available. Details regarding the training recipe and
its ablation are shown in supplementary materials.

3. Experiments
3.1. Efficiency Analysis
As shown in Figure 1 and 4, LongVidRWKV consumes
significantly less GPU memory than its transformer-
based counterparts. Also, LongVidRWKVachieves
faster inference speed. Compared with InternVL-1.5
2B [11], LongVidRWKV takes less GPU memory when
processing videos with 1,024 sampled frames and is 8X
faster in inference speed when taking 60 input frames.
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Figure 4. LongVidRWKV requires less computation and provides
lower latency compared to transformer models of similar size.

3.2. Quantitative Evaluation

3.2.1. Short Video Understanding

We conduct experiments to evaluate short video percep-
tion on multiple public datasets that provide various an-
notations with average video durations under 120 seconds.
This includes open-ended question-answering, short cap-
tioning, and detailed captioning. For open-ended video
question answering and dense captioning, we use LLM-
assisted evaluation with default model choices and hy-
perparameter settings in LMMs-Eval [20]. Although the
RWKV[32] LLM backbone is pretrained only on publicly
available data, LongVidRWKV exceeds Gemini-1.5-Pro in
VDC [5], a video detailed captioning benchmark.

3.2.2. Long Video Understanding

Since the RWKV LLM consumes much less memory than
its Transformer counterparts when processing long input se-
quences, we are able to train LongVidRWKV on up to 60
input frames, which significantly enhances performance on
common tasks like action counting (AC), action localization
(AL) and needle QA (NQA), as is also observed in [43]. It
is interesting that LongVidRWKV achieves comparable ac-
curacy while consuming only about 60 tokens per frame,
justifying our motivation for introducing token merge due
to the spatial redundancy in long video understanding.



Table 2. Comparison with other methods on MLVU [55] and MovieChat-1k [36]. Both datasets have an average video length of about 12
minutes. Results with * are evaluated in-house, while others are sourced from official leaderboards. The best result is highlighted in bold,
and the second best is underlined. CTX denotes LLM pretrained context length and maximum context length for proprietary models.

Models Input CTX Size MLVU MovieChat-1K
AVG AR ER AO AC TR NQA PQA Global Break

GPT4-o 0.5fps 128k - 54.5 68.8 47.8 46.2 35.0 83.7 42.9 57.1 - -
LLaVA-OneVision* [21] 32 frm 132k 0.5B 50.3 58.5 52.4 28.6 30.9 67.0 33.3 42.8 - -
Qwen2-VL* [41] 32 frm 132k 2B 48.7 54.7 47.6 30.9 28.6 73.8 40.4 60.5 - -
InternVL2* [10] 32 frm 200k 2B 48.2 57.4 57.1 35.7 33.4 66.7 28.5 50.0 - -
LongVA [47] 256 frm 224k 7B 42.1 41.0 39.6 17.1 23.3 81.3 46.7 46.0 55.9 56.5
ShareGPT4Video [7] 16 frm 8k 8B 34.2 25.6 45.3 17.1 8.3 73.6 31.7 38.0 69.0 60.9
InternVL-1.5 [11] 16 frm 8k 26B 37.9 51.3 24.5 14.3 13.3 80.2 40.0 42.0 57.7 61.1
VILA-1.5 [25] 14 frm 276k 40B 46.2 56.4 35.8 34.3 11.7 84.7 38.3 62.0 57.2 60.1
LongVidRWKV (ours) 48 frm 4k 2B 52.7 59.5 57.1 33.2 42.9 69.0 45.2 61.9 84.0 64.0

Table 3. Results on MVBench [22] whose videos primarily range from 5s to 35s. Results with * are evaluated in-house, while others are
sourced from official leaderboards. The best result is highlighted in bold, and the second best is underlined. We find that despite only being
trained on public datasets, LongVidRWKV is competitive with models of similar size trained on large-scale high-quality proprietary data.

Models Size MVBench
Avg. UA AC MA OE ST AL AP AS CO CI EN FGA MC MD OI OS SC

LLaVA-OneVision [21] 0.5B 45.5 72.5 43.5 49.5 50.0 85.5 12.5 41.0 54.0 49.0 35.5 21.5 42.0 33.0 17.5 61.0 32.5 45.5
InternVL2* [10] 2B 52.9 60.5 30.5 78.0 79.0 83.5 31.0 67.0 72.0 36.0 55.0 32.0 38.0 65.5 32.0 64.0 30.0 44.5
Qwen2-VL* [41] 2B 53.5 73.0 43.5 75.5 82.0 82.0 12.5 41.0 54.0 49.0 35.5 21.5 48.0 55.0 45.0 55.0 29.5 43.0
LongVA* [47] 7B 50.8 68.5 47.0 56.5 49.5 89.0 45.0 58.0 55.6 61.5 41.0 39.0 43.5 28.0 36.5 65.5 30.5 49.0
ShareGPT4Video* [7] 8B 47.2 56.5 34.0 74.5 81.8 84.5 34.5 48.0 45.2 46.0 51.0 25.0 35.0 60.5 54.0 56.5 33.0 50.0
InternVL-1.5* [11] 26B 50.6 73.5 27.5 62.5 44.0 89.5 39.3 61.0 62.0 64.0 40.5 34.5 46.5 33.0 36.0 65.5 28.5 53.0
VILA-1.5* [25] 40B 42.7 60.0 41.5 34.5 50.0 69.5 36.5 39.5 40.5 44.0 40.0 27.0 33.0 37.0 27.5 59.5 38.0 47.5

LongVidRWKV (ours) 2B 53.2 75.0 52.0 65.5 62.5 87.0 48.0 47.5 49.5 47.0 52.0 35.0 46.5 48.5 44.0 54.0 37.5 53.5

3.3. Ablation Study on Input Token Order

Previous Linear Attention-based image-LMMs [16] and
video encoders [23] enhance visual modeling by scan-
ning visual tokens bidirectionally, increasing computa-
tional complexity. In contrast, LongVidRWKV simply re-
orders merged visual tokens in ascending order by size
to better leverage pretrained unidirectional textual data.
RWKV’s [32] recurrent mechanism acts as an implicit po-
sition encoding but is disrupted by visual token merging.
However, the SigLIP encoder preserves positional informa-
tion via explicit embeddings, ensuring spatial coherence.
Since merging occurs within the same frame, temporal in-
formation remains intact. As is shown in Table 4, we ex-
amine three sorting strategies—random, ascending, and de-
scending—before feeding merged tokens into RWKV, find-
ing that ascending order performs best. This likely helps
RWKV6 prioritize critical information in tasks like visual
question answering by leveraging its data-dependent token-
shifting mechanism [32] to retain key frame details.

4. Conclusion

In this paper, we introduce LongVidRWKV, the first
video-based LMM with a fully recurrent RWKV [31]
LLM backbone. By incorporating a token merging strat-

Table 4. Ablation on input order for merged visual tokens within
a frame, where ascending order suggests tokens that are never
merged come first among tokens of the same frame. We found
that sorting merged tokens in an ascending manner brings the best
performance. The best result is highlighted in bold.

Token Order ANet [45] VATEX [42] VDC [5] MovieChat-1K [36]

Random 53.1 67.6 40.9 76.5
Descending 55.0 67.0 41.1 76.0
Ascending 56.3 68.5 41.3 78.5

egy, LongVidRWKVreduces computational overhead with-
out sacrificing performance and mitigates overfitting to
training context lengths—an issue common in linear atten-
tion variants. We conduct extensive experiments on multi-
ple video understanding benchmarks, achieving improved
performance with more input frames compared to larger
LMMs. The ablation studies validate the effectiveness of
the token merging ratio and the token reordering strategy
we propose. We hope this work provides a strong baseline
for hybrid LMMs and inspires further research in efficient
and scalable architectures for long video understanding.
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