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Supplementary Material

The supplementary material is structured as follows:
• The details and visualization examples of token merg-

ing in Section A.
• The training data for LongVidRWKV in Section B.
• The detailed evaluation of LongVidRWKV in Sec-

tion C.
• More ablation studies for LongVidRWKV in Sec-

tion D.
• Case studies among several long videos in Section E.

A. Token Merging
Since the RWKV [50] LLMs are trained on a context length
of merely 4,096 tokens, we adopt Token Merge (ToMe) [4]
to reduce the number of visual tokens passed to RWKV. By
combining similar visual tokens in the Vision Transformer
[19], ToMe increases the throughput of vision encoders and
has been proven effective across various tasks. Token Merg-
ing is applied between the attention and MLP within each
transformer block as:

1. Alternatively partition the tokens into two sets A and
B of roughly equal size.

2. For each token in set A, calculate the token similarity
with each token in set B based on cosine similarity of
the Key features in attention block.

3. Use bipartite soft matching and then select the most
similar r pairs.

4. Merge the tokens using weighted average, and record
the token size.

5. Concatenate the two sets A and B back together again.
Once the tokens have been merged, they actually carry

features of more than one input patch. Therefore, the pro-
portional attention [5] is formulated by

A = softmax
(
QK⊤
√
d

+ log s

)
(1)

where s represents the number of patches each token repre-
sents after token merging in previous layers. In LongVidR-
WKV we conduct frame-wise token merging, of which
more visualization can be found in the Appendix.

The number of tokens r merged in each layer of the Vi-
sion Transformer is calculated by the following formula:

r = (1− ratio) · (W ·H/P 2)/L (2)

where W , H is the width and the height of the input image,
P is the patch size, L is the number of layers in the trans-
former, ratio is the proportion of tokens to be kept. The

merging is evenly distributed across all layers of the SigLIP
Vision Transformer 1. We visualize the gradual token merg-
ing process within different Vision Transformer layers in
Figure A1 using image samples from WIT 2, LAION Art 3,
MSCOCO 4, and BLIP3-KALE 5 respectively.

# Token Please describe the image in detail. (Figure A1
Row 3)

576 The image depicts a man in the midst of a soccer game.
He is dressed in a green shirt and black shorts, and he is
wearing a pair of black socks. The man is holding a soc-
cer ball in his right hand, which is positioned close to his
body, suggesting he is either preparing to kick the ball or
has just kicked it. He is also wearing a black wristband
on his left wrist. The background shows a fence with a
chain-link fence, and beyond the fence, there are trees
and a clear sky. The man is standing on a grassy field,
and there are other players visible in the background,
indicating that this is a soccer practice or game. The im-
age does not provide any specific context or background
story.

408 The image depicts a man standing on a grassy field, fo-
cused on a soccer ball in his hands. He is dressed in a
green shirt and black shorts, and his attire suggests he
is a soccer player. The man is wearing a black wrist-
band on his left wrist, and his right arm is extended,
holding the ball. He is wearing black socks and black
shoes, and his socks are visible. The background is a
lush green field, and there are several other players in the
distance, suggesting this is a soccer practice or training
session. The sky is clear, indicating it might be a sunny
day. There are no other people visible in the image, and
the setting appears to be a private or semi-private field.

288 The image depicts a man in a green shirt and black shorts
running on a grassy field. He is wearing a green soccer
jersey with the number ”27” visible, and he is holding
a soccer ball in his right hand. The man is also wear-
ing black shorts and socks, and his shoes are black with
white laces. He is wearing black knee pads and black
socks. In the background, there are several other people,
including a man in a green shirt and black shorts, and
another man in a green shirt and black shorts, both of
whom are running. The field is surrounded by a chain-
link fence, and there are trees in the background. The
sky is clear, suggesting it is a sunny day. The image
captures a moment of leisure and physical activity.

72 The image depicts a man in a green jersey with the num-

1HuggingFace Model: google/siglip-large-patch16-384
2HuggingFace Dataset: google/wit
3HuggingFace Dataset: laion/laion-art
45K test set split from: http://cs.stanford.edu/people/

karpathy/deepimagesent/caption_datasets.zip
5HuggingFace Dataset: Salesforce/blip3-kale

https://huggingface.co/google/siglip-large-patch16-384
https://huggingface.co/datasets/google/wit
https://huggingface.co/datasets/laion/laion-art
http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip
http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip
https://huggingface.co/datasets/Salesforce/blip3-kale


Figure A1. Visualization of token merging within a 24-layer Vision Transformer. From left to right, we show the preprocessed image, the
merged image patches after the 6-th layer, the 12-th layer, the 18-th layer and the 24-th layer, which are represented by 576, 451, 325,
199, and 73 visual tokens respectively. From top to bottom, the image IDs are WIT:COCO-train2014-000000247906, LAION:2331508,
COCO:sa-393200, KALE:71789111.

ber 19 on it, standing on a grassy field. He is wearing a
pair of green socks and is holding a soccer ball in his
right hand. The background is a blurred field with a
chain-link fence in the background, and there are sev-
eral other players in the background, some of whom are
wearing jerseys with numbers. The sky is clear, suggest-
ing it might be a sunny day. The man is looking towards
the camera with a focused expression.

48 The image depicts a young man in a green sports uni-
form, running on a grassy field. He is wearing a black
headband, black shorts, and black socks. The man is
holding a soccer ball in his right hand, and his left hand
is raised in a gesture that suggests he is either prepar-
ing to catch the ball or is in the process of throwing it.
The background is a blurred green field with a few trees

and a fence in the distance. The sky is clear, indicating
it might be a sunny day. There are no other people or
objects in the immediate vicinity of the man, giving the
impression of a solitary moment.

# Token What is on the cover of the book? (Figure A1
Row 4)

576 The cover of the book features a cartoon-style illustra-
tion of a young boy sitting on the grass. He is dressed
in a red shirt and a red and white striped sweater, and he
is holding a green pencil in his right hand. The boy is
smiling and appears to be in a relaxed and happy mood.
The background of the cover is a light green color, and
there is a white border around the image. The title of the
book is prominently displayed in the upper left corner,
and the subtitle ”Spring Math Review” is written below



Table B1. Training hyper-parameters for LongVidRWKV

Hyper-parameters Pretrain Vision Language

ViT × ✓ ✓
MLP ✓ ✓ ✓
LLM × × ✓
epoch 1 1 2
peak learning rate 1e-4 4e-5 1e-5 / 8e-6
batch size 128 2,048 512
visual token kept ratio 100% 100% 10%

it in a smaller font. The overall design of the cover sug-
gests a playful and educational theme, likely aimed at
engaging young learners in the subject of mathematics.

408 The cover of the book features a cartoon-styled illustra-
tion of a young boy sitting on a green blanket. He is
smiling and looking towards the camera, giving a cheer-
ful and inviting impression. The boy is wearing a red
shirt and has blonde hair. The background of the cover
is a light blue color, which contrasts with the vibrant
colors of the boy’s attire. The title of the book is promi-
nently displayed in the upper left corner, and the subti-
tle ”Spring Math Number 1-20” is located at the bottom
of the cover. The overall design of the cover suggests a
playful and engaging approach to teaching basic number
concepts to young learners.

288 The cover of the book features a cartoon-style illustra-
tion of a young boy sitting on a green blanket. He is
smiling and appears to be in a relaxed and happy mood.
The boy is wearing a red shirt and has a green backpack
on his lap. The background of the cover is a light blue
color, and there are some white dots scattered around the
image. The overall impression is that of a cheerful and
engaging educational activity for young learners.

72 The cover of the book features a cartoon character.
48 The cover of the book features a cartoon character.

B. Training Recipe
LongVidRWKV is trained on a diverse collection of
datasets to enhance its performance in multimodal tasks,
particularly in video captioning and question-answering.
The utilized datasets during training is shown in Table B2,
Table B3 and Table B4.

During training, we only compute cross-entropy loss for
auto-regressive text generation. For all training stages, we
use the AdamW [44] optimizer with a cosine decay sched-
ule, setting the optimizer hyperparameters β1 and β2 to
0.9 and 0.999, respectively. Each stage employs a linear
warmup schedule with a start factor of 1e-5 and a warmup
ratio of 0.03. The differences in training hyperparameters
across all stages are detailed in Table B1. For visual data
preprocessing, we resize each visual input so that its short
side is 384 pixels while maintaining the original aspect ra-
tio. For token merging, we keep the number of visual tokens

being merged the same among each Vision Transformer
[19, 70] layer. Our model is trained on 8 NVIDIA A800
GPUs.

Pretraining stage. Similar to LLaVA [43], we first learn
the alignment between visual features from the vision en-
coder and the word embedding space of RWKV [50]. To
achieve this, we freeze the pretrained ViT and LLM, train-
ing solely the multimodal connector on image-caption pairs.

Vision stage. To achieve better vision generalization, we
next unfreeze the pretrained ViT while freezing the LLM
during the vision stage. Note that the data we use for this
stage are from various image-based computer vision tasks,
which may involve labels consisting of only a few words
or short phrases. Therefore, we freeze the LLM to avoid
degradation in its performance as in [7] and [2].

Language stage. Finally, we conduct end-to-end training
using high-quality public data. To maintain context length
similarity among samples and improve training efficiency,
we distinguish the single-image data from the multiple-
image samples (mainly from videos). Additionally, we set
the visual token retention ratio to 0.1 so that we can feed as
much input frames to LongVidRWKV as possible while fur-
ther enhancing the training efficiency. We start by training
with high-quality single-image data and then transit to video
datasets with a lower learning rate. To improve video under-
standing performance, we train on video captioning samples
and video question answering samples for two epochs.



Table B2. Summary of datasets used for training LongVidRWKV in Pretraining stage.

Task # Sample Dataset

Image Captioning 1.3M
LAION-CC-SBU-595K [43], ShareGPT4V [9], ALLaVA-Caption-LAION-
4V [8], ALLaVA-Caption-VFLAN-4V [8], DenseFusion [37]

Table B3. Summary of datasets used for training LongVidRWKV in Vision stage. For classification, Reasoning, VQA, and Generation
tasks, we adopt the dataset processed by M3IT [34] to fit the training objective of language models.

Task # Sample Dataset

Captioning 1,925K ShareGPT4V-PT [9], TextCaps [54], Image-Paragraph-Captioning [30]
Object-centric 438K COST [26], ChatterBox [60], V* [66]

Classification 238K
COCO-GOI [40], COCO-Text [62], ImageNet [51], COCO-ITM [40],
e-SNLI-VE [29], Mocheg [67], IQA [20]

Reasoning 100K CLEVR [27], NLVR [57], VCR [69], VisualMRC [58], Winoground [59]

VQA 3,518K

VQA v2 [23], Shapes VQA [1], DocVQA [48], OK-VQA [47],
Text-VQA [55], OCR-VQA [49], A-OK-VQA [52], ScienceQA [45]
ST-VQA [3], ViQuAE [31], LLaVA-OneVision [32]

Generation 145K Visual Storytelling [25], Visual Dialog [18], Multi30k [21]

Chinese 193K
COCO-Caption CN [36], Flickr-8k-Caption CN [35], multimodal Chat [75],
FM-IQA [22], ChineseFoodNet [11]

Total 6.6M For all datasets, we uniformly sample without duplication.

Table B4. Summary of datasets used for training LongVidRWKV in Language stage.

Task # Sample Dataset

Image Captioning 1,779K
ShareGPT4V [9], ALLaVA-Caption-LAION-4V [8], ALLaVA-Caption-
VFLAN-4V [8], DenseFusion [37], FaceCaption [17]

Video Captionin 1,659K MiraData [28], LLaVA-Hound [73], ShareGPT4Video [10]

Image Instruction 9,742K
LVIS-Instruct4V [63], ALLaVA-Instruct-LAION-4V [8], ALLaVA-Instruct-
VFLAN-4V [8], Cambrian [61], LLaVA-Mix-665K [41], M4-Instruct [42]

Video Instruction 446K LLaVA-Hound [73], ShareGPT4Video [10], LLaVA-Video-178k [74]
Language-only 143K Evol-Intruct-GPT4-Turbo-143K [8]

Total 15.4M We duplicate video captioning and instruction datasets in training.

C. Evaluation Results

In this section we report the detailed evaluation results
of LongVidRWKV on MLVU [76] and MVBench [33] in
Table B5 and Table B6. We find that although LongVidR-
WKV has only 2B parameters, it achieves comparable or
even better performance when compared with industry lead-
ing proprietary models like GPT4-o and open-weight SOTA
video LLMs like VILA-1.5 and InternVL-2. These re-
sults demonstrate LongVidRWKV’s strong capability in
handling long video inputs. Note that we do not conduct

LLM context extension as in [72]. Although only trained
on videos less than 60 frames, LongVidRWKV generalizes
well on long video tasks.

D. Ablation Studies
As a core strategy of LongVidRWKV, token merging plays
a significant role in reducing the number of visual tokens.
We conduct extensive ablation studies to explore the im-
pact of the token kept ratio and the merged tokens order in
terms of performance across multiple tasks including video
captioning, and video question answering as shown in Fig-



Table B5. Comparison of LongVidRWKV with SOTA methods on MLVU [76] whose average video length is about 12 minutes. The best
result is highlighted in bold, and the second best is underlined. We find that even with only 2B parameters, LongVidRWKV outperforms
models up to 38X larger across various long video understanding tasks.

Models Input CTX Size MLVU
AVG AR ER AO AC TR NQA PQA

Proprietary Models
GPT4-o 0.5fps 128k - 54.5 68.8 47.8 46.2 35.0 83.7 42.9 57.1
GPT4-Turbo 16frm 128k - 43.8 61.5 41.5 22.9 6.7 85.7 40.0 48.0
Qwen-VL-Max 10frm 32k - 34.4 53.8 26.4 20.0 11.7 75.8 15.0 38.0
Claude-3-Opus 16frm 128k - 21.8 30.8 17.0 10.0 6.7 53.8 14.0 20.0

Open-Source Video LMMs
LLAMA-VID [38] 1 fps 4k 7B 18.1 23.1 11.3 18.6 15.0 20.9 21.7 16.0
mPLUG-Owl-V [68] 16 frm 4k 7B 16.7 15.4 13.2 14.3 20.0 25.3 6.7 22.0
Video-ChatGPT [46] 16 frm 2k 7B 21.2 17.9 32.1 17.1 13.3 17.6 28.3 22.0
MovieChat [56] 2048 frm 4k 7B 16.5 10.3 15.1 17.1 15.0 18.7 23.3 16.0
Video-LLAVA [46] 8 frm 4k 7B 30.1 38.5 26.4 20.0 21.7 70.3 13.3 26.0
LLaVA-1.6 [42] 16 frm 8k 7B 27.1 17.9 26.4 21.4 16.7 63.7 13.3 30.0
LongVA [72] 256 frm 224k 7B 42.1 41.0 39.6 17.1 23.3 81.3 46.7 46.0
VideoChat2 [33] 16 frm 8k 7B 30.9 30.8 28.3 17.1 23.3 72.5 18.3 26.0
Video-XL 256 frm 131k 7B 46.3 28.2 41.5 48.6 31.7 78.0 50.0 46.0
ShareGPT4Video [10] 16 frm 8k 8B 34.2 25.6 45.3 17.1 8.3 73.6 31.7 38.0
Video-LLAMA-2 [16] 16 frm 131k 13B 18.8 12.8 17.0 15.7 8.3 52.7 13.3 12.0
InternVL-1.5 [13] 16 frm 4k 26B 37.9 51.3 24.5 14.3 13.3 80.2 40.0 42.0
VILA-1.5 [39] 14 frm 4k 40B 46.2 56.4 35.8 34.3 11.7 84.7 38.3 62.0

LongVidRWKV (ours) 48 frm 4k 2B 52.7 59.5 57.1 33.2 42.9 69.0 45.2 61.9

Table B6. Results on MVBench [33] whose videos primarily range from 5s to 35s. Results with * are evaluated in-house, while others are
sourced from official leaderboards. The best result is highlighted in bold, and the second best is underlined. We find that despite only being
trained on public datasets, LongVidRWKV is competitive with models of similar size trained on large-scale high-quality proprietary data.

Models Size MVBench
Avg. UA AC MA OE ST AL AP AS CO CI EN FGA MC MD OI OS SC

Proprietary Models
GPT4-V - 43.7 39.0 40.5 63.5 55.5 52.0 11.0 31.0 46.5 22.5 12.0 12.0 18.5 59.0 29.5 83.5 45.0 73.5
Gemini Pro - 37.7 37.7 40.0 41.8 35.4 38.7 33.7 36.4 36.2 41.5 18.0 16.5 43.5 37.5 39.8 75.4 42.3 67.1

Open Weight Models
Video-LLAMA [71] 7B 34.1 39.0 34.0 32.5 48.0 43.0 22.5 25.5 27.5 40.0 37.0 30.0 29.0 22.5 22.5 40.5 38.0 45.4
mPLUG-Owl-V [68] 7B 29.4 23.5 34.5 31.5 36.0 34.5 24.0 20.0 25.0 37.0 37.0 25.5 27.0 22.0 23.0 24.0 34.0 40.0
Video-ChatGPT [46] 7B 32.7 26.5 30.5 39.5 54.0 31.0 20.0 26.0 23.5 33.0 35.5 29.5 22.5 25.5 23.0 28.0 40.0 48.5
MovieChat [56] 7B 33.7 28.0 42.5 42.5 39.5 36.0 26.5 29.0 33.0 32.5 32.5 28.5 31.0 37.5 27.5 32.0 35.5 39.5
LLAVA-NeXT [42] 7B 32.8 35.0 35.5 42.5 34.6 58.0 20.5 31.0 33.4 34.5 17.0 31.5 38.0 26.5 25.0 42.0 13.8 38.5
LLAMA-VID [38] 7B 42.0 56.5 44.5 41.4 55.6 84.5 26.5 43.0 42.0 39.0 34.5 36.5 35.5 28.5 19.0 37.5 34.0 40.5
VILA-1.5* [39] 40B 42.7 60.0 41.5 34.5 50.0 69.5 36.5 39.5 40.5 44.0 40.0 27.0 33.0 37.0 27.5 59.5 38.0 47.5
LLaVA-OneVision [32] 0.5B 45.5 72.5 43.5 49.5 50.0 85.5 12.5 41.0 54.0 49.0 35.5 21.5 42.0 33.0 17.5 61.0 32.5 45.5
ShareGPT4Video* [10] 8B 47.2 56.5 34.0 74.5 81.8 84.5 34.5 48.0 45.2 46.0 51.0 25.0 35.0 60.5 54.0 56.5 33.0 50.0
LongVA* [72] 7B 50.8 68.5 47.0 56.5 49.5 89.0 45.0 58.0 55.6 61.5 41.0 39.0 43.5 28.0 36.5 65.5 30.5 49.0
InternVL-1.5* [15] 26B 50.6 73.5 27.5 62.5 44.0 89.5 39.3 61.0 62.0 64.0 40.5 34.5 46.5 33.0 36.0 65.5 28.5 53.0
InternVL2* [14] 2B 52.9 60.5 30.5 78.0 79.0 83.5 31.0 67.0 72.0 36.0 55.0 32.0 38.0 65.5 32.0 64.0 30.0 44.5
Qwen2-VL* [64] 2B 53.5 73.0 43.5 75.5 82.0 82.0 12.5 41.0 54.0 49.0 35.5 21.5 48.0 55.0 45.0 55.0 29.5 43.0

LongVidRWKV (ours) 2B 53.2 75.0 52.0 65.5 62.5 87.0 48.0 47.5 49.5 47.0 52.0 35.0 46.5 48.5 44.0 54.0 37.5 53.5

ure D2, Figure D3 and Figure D4. We define the perfor-
mance percentage as the proportion between the highest and
lowest values on the entire performance curve. We identify

the minimum retention thresholds for achieving 90% and
80% performance. Note that LongVidRWKV focuses on
spatial visual token merging, while the temporal features
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Figure D2. Visualization of token merging ratio on various video
understanding tasks. The solid points indicate the average perfor-
mance and the bounding bars the performance variability across
various tasks. All metrics considered here are of percentage scale.

introduce additional complexity to explore the token merg-
ing laws. Appendix A shows more calculation details and
the visualization results of token merging.

D.1. Ablation on Training Strategy
In this section, we explore the alternative training strategies
for the language stage of LongVidRWKV. For a fair com-
parison, we use the same training datasets across all settings
and maintain consistent hyper-parameters. The following
training settings are explored:

• Setting A: Do not apply token merge to single image sam-
ples. For video and multi-image samples mostly ranging
from 8 to 12 images, apply tome merge with a token kept
ratio of 0.1. The purpose of this setting is to keep num-
ber of visual tokens passed to LLM backbone roughly the
same, providing a smooth transition to multi-frame train-
ing in the temperal dimension.

• Setting B: Throughout the entire language stage train-
ing, always apply token merge with a token kept ratio of
0.1. Inspired by the high masking ratio in Masked Au-
toencoders [24] , the motivation of this training scheme is
to enchance LongVidRWKV’s visual modelling by forc-
ing it to capture fine-grained visual details from few vi-
sual tokens per single-image training sample, then transit
to multi-frame training by utilizing the temporal general-
ization capability of the RWKV LLM backbone.

We implement these two training strategies, track the
training costs in A800 hours, and evaluate on various video
understanding tasks. As shown in Figure D5, training
with setting A brings an extra 50% training time overhead
and leads to performance degradation across benchmarks.
Therefore, we choose Setting B as our final recipe.

D.2. Ablation on Token Merging Ratio
As a core strategy of LongVidRWKV, token merging plays
a significant role in reducing the number of visual tokens,

bridging the gap between the large number of video tokens
and the pretrained 4k context length of RWKV LLMs. In
this section, we further study how video understanding ca-
pability is influenced by token merging ratio across multiple
tasks. We report the performance percentage between the
highest and lowest values on the entire performance curve
and identify the minimum retention thresholds for achiev-
ing 90% and 80% of the peak performance. As shown in
Figure D3, for most tasks, LongVidRWKV reaches perfor-
mance peak even with a visual token kept ratio of only 0.1.
We further gather the visualization of token merging ratio
on all tested video understanding tasks in the Appendix.

Interestingly, as illustrated in Figure D3, for most
video captioning tasks such as VATEX and [65]
VDC [7], LongVidRWKV ’s seem to perform better
at lower token retention levels. This contrasts with most
Transformer-based token-reduction methods as in [7] and
[77], where performance generally declines when fewer
visual tokens are retained per frame and reaches a peak
performance when token kept ratio is higher than or equal
to 0.5. Referring to [12], we attribute this phenomenon to
overfitting as the the RWKV model’s recurrent state being
overparameterized for the relatively short visual context
length per frame in training, which is less than 60 tokens
when token merge ratio is set to 0.1. Despite the overfitting
tendency in spatial dimension, LongVidRWKV generalizes
well in temporal dimension, handling well long videos up
to 10 minutes long at zero-shot scenarios. More calculation
details and the visualization results can be found in the
Appendix.

E. Case Study
We conduct extensive case studies of LongVidRWKV on a
diverse set of videos to evaluate its performance in detailed
video captioning and video question-answering tasks. We
compare the captions and answers generated by LongVidR-
WKV with those produced by other leading models. As
shown in the followings, LongVidRWKV is capable of pro-
viding excellent detailed captions that accurately capture
the content of the videos, and answering questions with sig-
nificantly fewer hallucinations compared to existing mod-
els. Green highlights the correct answer, red indicates
that the model is wrong or hallucinating, and yellow rep-
resents the repeated parts.

Method Answer
Figure E6 [Question] In this video, how did the protagonist

stop the train?
VILA [39] The protagonist stops the train by

shooting webs at it .

InternVL2 [15] The protagonist in this video is Spider-Man ,
played by actor Andrew Garfield. He stopped the
train by using his web-slinging abilities to create
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Figure D3. Ablation study of token merging with no sort in short video question answering on ANet [6], short video sparse captioning on
VATEX [65], short video dense captioning on VDC [7], and long video question answering on MovieChat-1K [56]. We find that token
merging significantly reduces the number of tokens while maintaining minimal performance drop, and even shows improvement in some
tasks. We highlight the token merging ratio when achieving 90% and 80% performance with the dash line and filled area.
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Figure D4. Ablation study of token merging with descending order in short video question answering on ANet [6], short video sparse
captioning on VATEX [65], short video dense captioning on VDC [7], and long video question answering on MovieChat-1K [56]. We find
that token merging significantly reduces the number of tokens while maintaining minimal performance drop, and even shows improvement
in some tasks. We highlight the token merging ratio when achieving 90% and 80% performance with the dash line and filled area.

a web between the train cars and the tracks , effec-
tively stopping the train from moving.

LongVU [53] The protagonist in this video is Spider-Man . He
stopped the train by using his web-slinging abil-
ities to grab onto the train and prevent it from

crashing into the station .

LongVidRWKV The Spider-Man uses his web-shooters to swing

onto the train and then onto the train’s roof , us-
ing his web-slinging abilities to stop the train from
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Figure D5. Comparison between different training strategy in Lan-
guage stage. We take Accuracy for Question-Answering tasks and
CIDEr for captioning tasks as the evaluation metric and present the
performance percentage. We choose Setting B as the final training
strategy as shown with *. The number shows the maximum value
for each benchmark.

falling into the cliff .

Method Answer
Figure E7 [Question] In this video, how did the man ride on

the giant monster?
VILA [39] The man in the video rode on the giant monster by

using a rope to climb onto its back .

InternVL2 [15] In the video, the man rode on the giant mon-
ster by using a rope to tie around its neck and then

sliding down its back .

LongVU [53] The man in the video rode on the giant monster by
climbing up a hill .

LongVidRWKV Before the giant monster appeared, the man was
seen running and jumping in the desert hill . When
riding the giant monster, the man controlled it with
his long metal hook .

Method Answer
Figure E8 [Question] Describe the events in the video shown

by these frames in at least three sentences.
VILA [39] The video shows two men sitting at a table outside,

one of them is eating and the other is talking. The
man who is eating is wearing a tan shirt and the other
man is wearing a yellow jacket. They are both sit-
ting at a picnic table and there is a car parked behind
them.

InternVL2 [15] In the video, two men are seated at a white picnic ta-
ble outside a restaurant, engaged in a conversation.
The man dressed in a mustard yellow turtleneck and
plaid blazer is holding a piece of paper, while the
other man, dressed in a beige sweater, is smoking a
cigarette. The table is cluttered with various items,
including cups, a bag of chips, and a blue napkin .
The conversation appears to be serious in nature,
with both men looking intently at each other.

LongVU [53] Two men are sitting at a table in a fast-food
restaurant. One man is smoking a cigarette
and holding a yellow cup, while the other
man is reading a letter. The man with the

cigarette is smoking and looking at the camera .

The man with the letter is reading it and then puts it

down. The man with the cigarette is smoking and

looking at the man with the letter. The man with

the letter is reading a letter and then puts it down.

The man with the cigarette is smoking and looking

at the man with the letter. The man with the letter
is reading a letter and then puts it down.

LongVidRWKV The video depicts a man sitting at a table in a casual
outdoor setting, engaging in a conversation with an-
other individual. The man in the yellow jacket is
holding a piece of paper and appears to be explain-
ing or discussing something with the other individ-
ual. The setting is outdoors, with a clear view of a
suburban street and a parked car, suggesting a ca-
sual, relaxed atmosphere. The man in the yellow
jacket is seen holding a cup, possibly a beverage,
and appears to be in a relaxed state, indicating a ca-
sual and informal conversation. The scene is set in a
residential area with a suburban house visible in the
background, and the weather is clear, suggesting a
pleasant day. The video captures the interaction be-
tween the two men, focusing on their conversation
and the man in the yellow jacket holding the paper,
which seems to be a piece of paper with text on it.

Method Answer
Figure E9 [Question] Describe the events in the video shown

by these frames in at least three sentences.
VILA [39] The video shows a man in a red and blue suit

swinging through the city. He is seen fighting a
bald man and a woman in a black dress. The man
is also seen swinging through the city and fighting a
man in a black suit.

InternVL2 [15] The video captures Spider-Man engaging in a se-
ries of action-packed scenes. In the initial frame,
he is seen flying above a city, with the iconic spi-
der logo on his back. The subsequent images
show him swinging between skyscrapers, battling
a villain with mechanical tentacles, and rescuing a
woman holding a baby amidst chaos. Throughout
the video, Spider-Man displays his agility and hero-
ism, navigating through intense action sequences
that include explosions and high-stakes rescues, cul-
minating in a dramatic leap from a building at night.

LongVU [53] The video begins with a close-up of a per-
son’s hand holding a smartphone, capturing
a scene of a cityscape at night with a large,
illuminated billboard and a vehicle with flashing

red and blue lights. The scene then transitions to
a first-person perspective of a character in a red
and blue suit, running through a cityscape at night,
with a focus on the character’s hands and the
smartphone they’re holding. The perspective shifts



Figure E6. Video clips from Spider-Man, a superhero story, which tells the tale of a young man named Peter Parker who gains spider-like
abilities and uses them to fight villains, protect his city, and navigate the challenges of responsibility and heroism.

Figure E7. Video clips from Dune, a sci-fi epic, which tells the story of Paul Atreides, a young nobleman who must navigate political
intrigue and warfare on the desert planet Arrakis while embracing his destiny to protect its precious resource and lead its people.

to show the character’s feet as they leap off a
building, with a view of the cityscape below and a
large, illuminated billboard in the background.

LongVidRWKV The video showcases a dynamic and visually strik-
ing scene set in a bustling cityscape, where a super-
hero, clad in a striking blue and red costume, is seen
performing a series of acrobatic maneuvers against a
backdrop of a city skyline. Initially, the superhero is
seen in mid-air, executing a series of acrobatic flips
and spins, with a large, fiery explosion occurring in
the background, suggesting a dramatic or explosive
moment. As the video progresses, the superhero
continues to perform acrobatic stunts, including a
dramatic leap and a flip, while the cityscape remains
a constant backdrop, emphasizing the action. The
scene is filled with a sense of urgency and drama,
highlighted by the presence of a large, fiery explo-
sion and the superhero’s intense focus on the task at
hand. The video captures the essence of a superhero
in action, with the cityscape serving as a backdrop
that enhances the dramatic and action-packed nature
of the scene.
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